<span id="zbvrr"></span>
<strike id="zbvrr"><i id="zbvrr"><del id="zbvrr"></del></i></strike>
<strike id="zbvrr"><i id="zbvrr"><del id="zbvrr"></del></i></strike>
<strike id="zbvrr"><dl id="zbvrr"></dl></strike>
<ruby id="zbvrr"></ruby> <span id="zbvrr"><dl id="zbvrr"><ruby id="zbvrr"></ruby></dl></span>
<th id="zbvrr"><noframes id="zbvrr">
<th id="zbvrr"><dl id="zbvrr"></dl></th>
<span id="zbvrr"></span>
<ruby id="zbvrr"><video id="zbvrr"><ruby id="zbvrr"></ruby></video></ruby>
<strike id="zbvrr"><i id="zbvrr"><del id="zbvrr"></del></i></strike>
<strike id="zbvrr"></strike>
<strike id="zbvrr"><i id="zbvrr"><cite id="zbvrr"></cite></i></strike>
<span id="zbvrr"></span>
<span id="zbvrr"></span>
<strike id="zbvrr"><i id="zbvrr"><cite id="zbvrr"></cite></i></strike>
<span id="zbvrr"><i id="zbvrr"><del id="zbvrr"></del></i></span>
<ruby id="zbvrr"><i id="zbvrr"><del id="zbvrr"></del></i></ruby>
<strike id="zbvrr"><i id="zbvrr"></i></strike><strike id="zbvrr"></strike><strike id="zbvrr"><i id="zbvrr"><cite id="zbvrr"></cite></i></strike>
<ruby id="zbvrr"><i id="zbvrr"></i></ruby><span id="zbvrr"><i id="zbvrr"></i></span>
<strike id="zbvrr"></strike><strike id="zbvrr"></strike>
注冊
logo
鎳基高溫合金增材制造過程中裂紋類型、機理及抑制方法綜述

研究現狀

鎳基高溫合金是航空航天領域不可缺少的基礎性材料,但難變形、難切削、易偏析、工藝流程長、成材率低等缺點一直是鎳基高溫合金零部件制造所面臨的難題,渦輪葉片、發動機燃油噴嘴等結構復雜零部件的生產問題一直面臨上述問題。高能束增材制造技術(high-energy beam additive manufacturing, HEB-AM)直接制造復雜零部件,成形精度高、周期短、材料利用率高、減少機加工,極大程度上解決了傳統加工技術面臨的問題。HEB-AM技術已廣泛應用于常見金屬材料的制造生產過程中,例如模具鋼,鈦合金和鋁合金等。目前,在HEB-AM成形鎳基高溫合金方面,國內外已有部分研究,沉淀強化型(Inconel718、Inconel738和Rene88DT等),固溶強化型(Inconel625、Hastelloy X)等鎳基高溫合金均有研究。

微裂紋缺陷是HEB-AM成形鎳基高溫合金中常見的缺陷,嚴重制約著成形零部件的力學性能,是必須予以解決的問題。由于HEB-AM過程始終伴隨著較高的熱應力,合金化程度高的鎳基高溫合金易產生顯微偏析。受制于成形過程晶粒外延生長特性,在熱影響區容易萌生裂紋,并沿著晶界擴展。針對鎳基高溫合金在HEB-AM過程中的微裂紋形成原因,國內外也做了一些研究。總的來說鎳基高溫合金在SLM成形過程中微裂紋的萌發和擴展歸因于材料本身的冶金性能和過大的熱應力。

激上。

圖1 應用高能束增材制造技術打印鎳基高溫合金的主要裂紋類型為凝固裂紋、液化裂紋、應變裂紋、延性-浸漬裂紋和冷裂


圖2 高能束增材制造技術加工鎳基高溫合金的裂紋抑制方法

研究難點或瓶頸

鎳基高溫合金在600℃以上仍保持較高的強度、良好的抗熱腐蝕性、抗熱氧化性及良好的組織穩定性,是航天航空發動機熱端零部件中不可取代的材料。然而,傳統方法難以制造復雜結構的鎳基高溫合金,HEB-AM是解決鎳基高溫合金難制造問題的核心技術。然而,HEB-AM成形鎳基高溫合金尚處于起步階段,且大多數研究致力于工藝參數優化及熱處理對組織影響,HEB-AM成形鎳基高溫合金的高溫性能差和微裂紋缺陷還沒有完全解決,鎳基高溫合金成分優化對成形質量的方面的研究更是缺乏。 


圖3 裂紋產生的原因及抑制裂紋的機理和方法總結

未來展望

(1) 過大熱應力是SLM成形鎳基高溫合金中微裂紋缺陷形成的驅動力。目前缺少對SLM成形鎳基高溫合金成形過程中的熱應力相關研究,有必要借助模擬仿真手段研究SLM成形過程中的溫度場和應力場,為降低成形過程中的熱應力提供指導。同時采用在線工藝優化以及同步高溫預熱技術,來降低成形過程中產生的熱應力,減少裂紋產生的趨勢。(2) 用于HEB-AM工藝的無裂紋鎳基高溫合金的合金設計。當前HEB-AM成形用鎳基高溫合金粉末為成熟的傳統牌號,這些成熟牌號的合金成分是基于鑄造、鍛造工藝特點予以設計的,并未充分考慮HEB-AM快熔速冷的技術特點,開發出適合HEB-AM技術特點的專用合金,是HEB-AM成形高質量鎳基高溫合金必須予以高度重視的研究方向。

(3) 隨著HEB-AM技術的深入發展,大尺寸復雜結構零部件的整體制造被提上日程,這將需要多激光協同作業。目前缺乏多激光成形鎳基高溫合金的相應研究,下一步有必要加大對多激光大臺面成形鎳基高溫合金工藝及設備方面的研究,為整體制造大尺寸復雜零部件提供技術支持。

論文原文鏈接:

doi.org/10.1016/j.cjmeam.2022.100055

https://www.sciencedirect.com/science/article/pii/S2772665722000393?

論文引用:

Qingsong Wei, Yin Xie, Qing Teng, Muyu Shen, Shanshan Sun, Chao Cai. Crack Types, Mechanisms, and Suppression Methods during High-energy Beam Additive Manufacturing of Nickel-based Superalloys: A Review. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, 1(4): 100055.


團隊帶頭人介紹

                 
魏青松,男,1975年生。華中科技大學“華中學者”特聘教授,材料科學與工程學院博士生導師,材料加工與計算機應用系副主任,材料成形與模具技術國家重點實驗室PI教授,學校學術前沿青年團隊負責人。擔任中國機械工程學會增材制造分會副總干事、中國機械工程學會特種加工分會理事、中國模具協會裝備委員會副主任。主要從事增材制造(3D打印)研究與教學工作,近年來主持了國家重點研發計劃、國家自然科學基金、國家科技支撐計劃、國際合作等科研任務20余項。研究高性能構件材料制備與成形一體化3D打印技術,打印的發動機機匣鑄型、隨形水道金屬模具及個性化醫學植入體獲得應用,研制的金屬激光3D打印機和陣列式噴印打印機獲產業化生產。在《ACTA Materialia》、《中國科學》等國內外權威期刊上發表論文150余篇,SCI收錄60余篇,他引5000余次(ESI高被引7篇次)。授權發明專利近30項,主編專著(教材)3部、參編1部。獲全國百篇優秀博士論文提名,入選武漢市黃鶴英才計劃、武漢市青年科技晨光計劃、江蘇省科技創新(雙創)人才計劃,是教育部創新團隊學術骨干。曾擔任全國增材制造青年科學家論壇主席,受邀國內外會議報告10余次。獲得2011年中國十大科技進展、2項省部級一等獎、3項省部級二等獎,獲“華中科技大學師德三育人獎”稱號。

作者介紹

                  
謝寅(本文第二作者),男,1998年生,華中科技大學材料科學與工程學院碩士研究生,主要研究方向為L-PBF成形鎳基高溫合金工藝及應用的研究。

近年團隊發表文章

[1] Yin Xie, Qing Teng, Muyu Shen, Zhenyu Zhang, Yu Wei, Chao Cai* & Qingsong Wei*. The role of overlap region width in multi-laser powder bed fusion of Hastelloy X superalloy[J]. Virtual and Physical Prototyping, 2022, 18(1): 2142802.

[2] Yanbing Liu, Jikang Li, Ke Xu, Tan Cheng, Danlei Zhao, Wei Li, Qing Teng, Qingsong Wei*. An optimized scanning strategy to mitigate excessive heat accumulation caused by short scanning lines in laser powder bed fusion process[J]. Additive Manufacturing, 2022, 60(12): 103256.

[3] Zhao Danlei, Han Changjun, Peng Bo, Cheng Tan, Fan Junxiang, Yang Lei, Chen Lili, Wei Qingsong*. Corrosion fatigue behavior and anti-fatigue mechanisms of an additively manufactured biodegradable zinc-magnesium gyroid scaffold, Bioactivity and in-Situ Bone Regeneration Capability[J]. Acta Biomaterialia, 2022, 153: 614-629.

[4] Li Jikang, Zhang Zhenwu, Xu Wenhe, Yang Yuanqi, Xue Pengju, Teng Qing, Cai Chao, Li Wei, Wei Qingsong*. Hot isostatic pressing of Cu–15Ni–8Sn alloy with suppressed Sn macro-segregation and enhanced mechanical properties[J]. Materials Science and Engineering: A, 2022, 855(5): 143866.

[5] Cheng Tan, Chen Hui, Teng Qing, Wei Qingsong*. In-situ experiment tests and particulate simulations on powder paving process of additive manufacturing[J]. Particuology, 2022, 74: 164-172.

[6] Li Jikang, Zhang Zhenwu, Yang Yuanqi, Cai Chao, Li Wei, Wei Qingsong*. Single-track morphology, crystal orientation and microstructure of DD91 nickel-based single crystal superalloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2022, 49(14): 1402103.

[7] Cheng Tan, Chen Hui, Wei Qingsong. The Role of Roller Rotation Pattern in the Spreading Process of Polymer/Short-Fiber Composite Powder in Selective Laser Sintering[J]. Polymers, 2022, 14(12): 2345.

[8] Teng Qing, Xie Yin, Sun Shanshan, Xue Pengju, Long Anping, Wu Tingguang, Cai Chao, Guo Jianzheng, Wei Qingsong*. Understanding on processing temperature-metallographic microstructure-tensile property relationships of third-generation nickel-based superalloy WZ-A3 prepared by hot isostatic pressing[J]. Journal of Alloys and Compounds, 2022, 909: 164668.

[9] Li Jikang, Cheng Tan, Liu Yanbing, Yang Yuanqi, Li Wei, Wei Qingsong. Simultaneously enhanced strength and ductility of Cu-15Ni-8Sn alloy with periodic heterogeneous microstructures fabricated by laser powder bed fusion[J]. Additive Manufacturing, 2022, 54(12): 102726.

[10] Chen Hui, Chen Tan, Li Zhongwei, Wei Qingsong. Is high-speed powder spreading really unfavourable for the part quality of laser powder bed fusion additive manufacturing?[J] Acta Materialia, 2022, 231: 117901.

[11] Li Wei*, Li Jikang, Duan Xianyin, He Chuanyue, Wei Qingsong*, Shi Yusheng. Dislocation-Induced Ultra-High Strength in a Novel Steel Fabricated Using Laser Powder-Bed-Fusion[J]. Materials Science and Engineering: A, 2022, 832: 142502.

[12] Chen Hui, Cheng Tan, Wei Qingsong, Yan Wentao. Dynamics of Short Fiber/Polymer Composite Particles in Paving Process of Additive Manufacturing[J]. Additive Manufacturing, 2021, 47: 102246.

[13] Zhao Danlei, Liang Hang, Han Changjun, Li Jingjing, Liu Jie, Zhou Kun, Yang Cao*, Wei Qingsong*. 3d Printing of a Titanium-Tantalum Gyroid Scaffold with Superb Elastic Admissible Strain, Bioactivity and in-Situ Bone Regeneration Capability[J]. Additive Manufacturing, 2021, 47: 102223.

[14] Sun Shanshan, Teng Qing, Xie Yin, Liu Tong, Ma Rui, Bai Jie, Cai Chao*, Wei Qingsong*. Two-Step Heat Treatment for Laser Powder Bed Fusion of a Nickel-Based Superalloy with Simultaneously Enhanced Tensile Strength and Ductility[J]. Additive Manufacturing, 2021, 46: 102168.

[15] Wang Min, Zhang Yuanjie, Song Bo, Wei Qingsong, Shi Yusheng. Wear Performance and Corrosion Behavior of Nano-Sicp-Reinforced Alsi7mg Composite Prepared by Selective Laser Melting[J]. Acta Metallurgica Sinica, 2021, 34(9): 1213-1222.

[16] Shi Yusheng, Zhang Jinliang, Wen Shifeng, Song Bo, Yan Chunze, Wei Qingsong, Wu Jiamin, Yin Yajun, Zhou Jianxin, Chen Rui, Zhou Wei, Jia Heping, Yang Huanqing, Nan Hai. Additive Manufacturing and Foundry Innovation[J]. China Foundry, 2021, 18(4): 286-295.

[17] Mao Yiwei, Li Jingwen, Li Wei, Cai Daosheng, Wei Qingsong. Binder Jetting Additive Manufacturing of 316l Stainless-Steel Green Parts with High Strength and Low Binder Content: Binder Preparation and Process Optimization[J]. Journal of Materials Processing Technology, 2021, 291: 117020.

[18] Cai Chao, Gao Xiangyun, Teng Qing, Kiran Raj, Liu Jie*, Wei Qingsong*, Shi Yusheng. Hot Isostatic Pressing of a near Α-Ti Alloy: Temperature Optimization, Microstructural Evolution and Mechanical Performance Evaluation[J]. Materials Science and Engineering: A, 2021, 802: 140426.

[19] Teng Qing, Li Shuai, Wei Qingsong, Shi Yusheng. Investigation on the Influence of Heat Treatment on Inconel 718 Fabricated by Selective Laser Melting: Microstructure and High Temperature Tensile Property[J]. Journal of Manufacturing Processes, 2021, 61: 35-45.

上一篇 下一篇
用戶登錄
沒有賬戶?去注冊
填寫注冊資料
*
*
*
*
*
<span id="zbvrr"></span>
<strike id="zbvrr"><i id="zbvrr"><del id="zbvrr"></del></i></strike>
<strike id="zbvrr"><i id="zbvrr"><del id="zbvrr"></del></i></strike>
<strike id="zbvrr"><dl id="zbvrr"></dl></strike>
<ruby id="zbvrr"></ruby> <span id="zbvrr"><dl id="zbvrr"><ruby id="zbvrr"></ruby></dl></span>
<th id="zbvrr"><noframes id="zbvrr">
<th id="zbvrr"><dl id="zbvrr"></dl></th>
<span id="zbvrr"></span>
<ruby id="zbvrr"><video id="zbvrr"><ruby id="zbvrr"></ruby></video></ruby>
<strike id="zbvrr"><i id="zbvrr"><del id="zbvrr"></del></i></strike>
<strike id="zbvrr"></strike>
<strike id="zbvrr"><i id="zbvrr"><cite id="zbvrr"></cite></i></strike>
<span id="zbvrr"></span>
<span id="zbvrr"></span>
<strike id="zbvrr"><i id="zbvrr"><cite id="zbvrr"></cite></i></strike>
<span id="zbvrr"><i id="zbvrr"><del id="zbvrr"></del></i></span>
<ruby id="zbvrr"><i id="zbvrr"><del id="zbvrr"></del></i></ruby>
<strike id="zbvrr"><i id="zbvrr"></i></strike><strike id="zbvrr"></strike><strike id="zbvrr"><i id="zbvrr"><cite id="zbvrr"></cite></i></strike>
<ruby id="zbvrr"><i id="zbvrr"></i></ruby><span id="zbvrr"><i id="zbvrr"></i></span>
<strike id="zbvrr"></strike><strike id="zbvrr"></strike>
成人电影网站